Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Mol Oncol ; 18(1): 62-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37849446

RESUMEN

Hematogenous metastasis limits the survival of colorectal cancer (CRC) patients. Here, we illuminated the roles of CD44 isoforms in this process. Isoforms 3 and 4 were predominantly expressed in CRC patients. CD44 isoform 4 indicated poor outcome and correlated with epithelial-mesenchymal transition (EMT) and decreased oxidative phosphorylation (OxPhos) in patients; opposite associations were found for isoform 3. Pan-CD44 knockdown (kd) independently impaired primary tumor formation and abrogated distant metastasis in CRC xenografts. The xenograft tumors mainly expressed the clinically relevant CD44 isoforms 3 and 4. Both isoforms were enhanced in the paranecrotic, hypoxic tumor regions but were generally absent in lung metastases. Upon CD44 kd, tumor angiogenesis was increased in the paranecrotic areas, accompanied by reduced hypoxia-inducible factor-1α and CEACAM5 but increased E-cadherin expression. Mitochondrial genes and proteins were induced upon pan-CD44 kd, as were OxPhos genes. Hypoxia increased VEGF release from tumor spheres, particularly upon CD44 kd. Genes affected upon CD44 kd in xenografts specifically overlapped concordantly with genes correlating with CD44 isoform 4 (but not isoform 3) in patients, validating the clinical relevance of the used model and highlighting the metastasis-promoting role of CD44 isoform 4.


Asunto(s)
Angiogénesis , Neoplasias Colorrectales , Humanos , Xenoinjertos , Línea Celular Tumoral , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Hipoxia/genética , Regulación Neoplásica de la Expresión Génica
2.
Gastroenterology ; 166(2): 298-312.e14, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37913894

RESUMEN

BACKGROUND & AIMS: The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS: Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS: Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS: Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína smad3/metabolismo
3.
J Pers Med ; 13(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38138928

RESUMEN

Receptor tyrosine kinase erythroblastic oncogene B2 (ERBB2), also known as human epidermal growth factor receptor 2 (HER2), represents an oncogenic driver and has been effectively targeted in breast and gastric cancer. Recently, next-generation sequencing (NGS) discovered ERBB2 as a promising therapeutic target in metastatic colorectal cancer (mCRC), where it is altered in 3-5% of patients, but no therapies are currently approved for this use. Herein, we present the experience of a single center in diagnosing actionable genetic ERBB2 alterations using NGS and utilizing the latest therapeutic options. Between October 2019 and December 2022, a total of 107 patients with advanced CRC underwent molecular analysis, revealing actionable ERBB2 mutations in two patients and ERBB2 amplifications in two other patients. These findings correlated with immunohistochemical (IHC) staining. Of these four patients, two were treated with trastuzumab-deruxtecan (T-DXd). We present two exemplary cases of patients with actionable ERBB2 alterations to demonstrate the effectiveness of T-DXd in heavily pretreated ERBB2-positive mCRC patients and the need for early molecular profiling. To fully exploit the potential of this promising treatment, earlier molecular profiling and the initiation of targeted therapies are essential.

4.
Br J Cancer ; 129(10): 1580-1589, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37726478

RESUMEN

BACKGROUND: Germ cell tumors (GCT) might undergo transformation into a somatic-type malignancy (STM), resulting in a cell fate switch to tumors usually found in somatic tissues, such as rhabdomyosarcomas or adenocarcinomas. STM is associated with a poor prognosis, but the molecular and epigenetic mechanisms triggering STM are still enigmatic, the tissue-of-origin is under debate and biomarkers are lacking. METHODS: To address these questions, we characterized a unique cohort of STM tissues on mutational, epigenetic and protein level using modern and high-throughput methods like TSO assays, 850k DNA methylation arrays and mass spectrometry. RESULTS AND CONCLUSIONS: For the first time, we show that based on DNA methylation and proteome data carcinoma-related STM more closely resemble yolk-sac tumors, while sarcoma-related STM resemble teratoma. STM harbor mutations in FGF signaling factors (FGF6/23, FGFR1/4) highlighting the corresponding pathway as a therapeutic target. Furthermore, STM utilize signaling pathways, like AKT, FGF, MAPK, and WNT to mediate molecular functions coping with oxidative stress, toxin transport, DNA helicase activity, apoptosis and the cell cycle. Collectively, these data might explain the high therapy resistance of STM. Finally, we identified putative novel biomarkers secreted by STM, like EFEMP1, MIF, and DNA methylation at specific CpG dinucleotides.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Teratoma , Humanos , Metilación de ADN , Proteoma/genética , Proteoma/metabolismo , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias de Células Germinales y Embrionarias/genética , Teratoma/genética , Teratoma/metabolismo , Teratoma/patología , Biomarcadores/metabolismo , Proteínas de la Matriz Extracelular/genética
5.
Histopathology ; 83(4): 607-616, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37308176

RESUMEN

AIMS: The reliable classification of type A versus type B3 thymomas has prognostic and therapeutic relevance, but can be problematic due to considerably overlapping morphology. No immunohistochemical markers aiding in this distinction have been published so far. METHODS AND RESULTS: We identified and quantified numerous differentially expressed proteins using an unbiased proteomic screen by mass spectrometry in pooled protein lysates from three type A and three type B3 thymomas. From these, candidates were validated in a larger series of paraffin-embedded type A and B3 thymomas. We identified argininosuccinate synthetase 1 (ASS1) and special AT-rich sequence binding protein 1 (SATB1) as highly discriminatory between 34 type A and 20 type B3 thymomas (94% sensitivity, 98% specificity and 96% accuracy). Although not the focus of this study, the same markers also proved helpful in the diagnosis of type AB (n = 14), B1 (n = 4) and B2 thymomas (n = 10). CONCLUSIONS: Mutually exclusive epithelial expression of ASS1 in 100% of type B3 thymomas and ectopic nuclear expression of SATB1 in 92% of type A thymomas support the distinction between type A and type B3 thymomas with 94% sensitivity, 98% specificity and 96% accuracy.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz , Timoma , Neoplasias del Timo , Humanos , Timoma/diagnóstico , Timoma/metabolismo , Neoplasias del Timo/diagnóstico , Argininosuccinato Sintasa , Proteómica , Inmunohistoquímica , Organización Mundial de la Salud
6.
Clin Exp Metastasis ; 40(3): 235-242, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37093320

RESUMEN

Long-term therapy for unresectable colorectal liver metastases remains challenging. Intraarterial treatments aim to avoid systemic adverse effects of chemotherapy. Nanoliposomal cytotoxic drugs manage to increase the drug concentration within the tumor while reducing toxicity in healthy tissue.  In this study we analyzed the effect of hepatic arterial infusion (HAI) with nanoliposomal irinotecan with or without the combination of embolization particles in a rat model for colorectal liver metastases. For the study 32 WAG/Rij rats received subcapsular tumor implantation with CC531 rat colonic adenocarcinoma cells. After ten days tumor size was assessed via ultrasound and animals underwent HAI. One group served as control receiving NaCl 0.9 % (Sham), the three treatment groups received either nanoliposomal irinotecan (HAI nal iri), Embocept® S (HAI Embo) or Embocept® S and nanoliposomal irinotecan (HAI Embo+nal iri). Three days after treatment animals were sacrificed after assessment of tumor size. As a result all treatment groups showed a significant reduction in tumor growth compared to Sham (p<0.05). Expression of the apoptosis marker caspase-3 was enhanced in HAI nal iri and HAI Embo+nal iri compared to Sham and HAI Embo and  even significantly enhanced after HAI Embo+nal iri in comparison to Sham (p<0.05). We were able to show that HAI with Embocept® S led to significantly reduced tumor growth while HAI with nanoliposomal irinotecan alone or in combination with Embocept® S even led to a reduction of tumor size. Thus, we demonstrate that intraarterial treatment with nanoliposomal irinotecan effectively inhibits tumor growth in a rat model of colorectal liver metastases and demands further investigation.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias Hepáticas , Ratas , Animales , Irinotecán , Apoptosis , Antineoplásicos/uso terapéutico , Neoplasias Hepáticas/secundario , Neoplasias del Colon/patología , Infusiones Intraarteriales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Arteria Hepática , Fluorouracilo
7.
Nat Commun ; 14(1): 2353, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095087

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) frequently metastasizes into the peritoneum, which contributes to poor prognosis. Metastatic spreading is promoted by cancer cell plasticity, yet its regulation by the microenvironment is incompletely understood. Here, we show that the presence of hyaluronan and proteoglycan link protein-1 (HAPLN1) in the extracellular matrix enhances tumor cell plasticity and PDAC metastasis. Bioinformatic analysis showed that HAPLN1 expression is enriched in the basal PDAC subtype and associated with worse overall patient survival. In a mouse model for peritoneal carcinomatosis, HAPLN1-induced immunomodulation favors a more permissive microenvironment, which accelerates the peritoneal spread of tumor cells. Mechanistically, HAPLN1, via upregulation of tumor necrosis factor receptor 2 (TNFR2), promotes TNF-mediated upregulation of Hyaluronan (HA) production, facilitating EMT, stemness, invasion and immunomodulation. Extracellular HAPLN1 modifies cancer cells and fibroblasts, rendering them more immunomodulatory. As such, we identify HAPLN1 as a prognostic marker and as a driver for peritoneal metastasis in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Neoplasias Peritoneales , Ratones , Animales , Peritoneo/metabolismo , Neoplasias Peritoneales/patología , Ácido Hialurónico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Metástasis de la Neoplasia/patología , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Neoplasias Pancreáticas
8.
Medicine (Baltimore) ; 102(9): e33143, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862864

RESUMEN

Among all cancer patient's lung cancer is the leading cause of death. Prognostic biomarkers continue to be investigated for the detection and stratification of lung cancer for clinical use. The DNA-dependent protein kinase is involved in mechanisms of DNA damage repair. Deregulation and overexpression of DNA-dependent protein kinase is associated with poor prognosis in various tumor entities. In this study, we investigated the expression of DNA-dependent protein kinase in relation to clinicopathological features and overall survival in patients with lung cancer. By immunohistochemistry, expression of DNA-dependent protein kinase was analyzed in 205 cases of lung cancer; 95 cases of adenocarcinoma, 83 cases of squamous cell lung carcinoma and 27 cases of small cell lung cancer and correlated with clinicopathological characteristics as well as patient's overall survival. In patients with adenocarcinoma, a significant correlation between strong expression of DNA-dependent protein kinase and worse overall survival was found. No significant association was observed in patients with squamous cell lung carcinoma and small cell lung cancer. Strong detection of DNA-dependent protein kinase expression was most evident in small cell lung cancer (81.48 %), followed by squamous cell lung carcinoma (62.65 %) and adenocarcinoma (61.05 %). In our study, expression of DNA-dependent protein kinase was associated with poor overall survival in patients with adenocarcinoma. DNA-dependent protein kinase could serve as a new prognostic biomarker.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Proteína Quinasa Activada por ADN , Pronóstico , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , ADN
9.
Cancers (Basel) ; 15(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900379

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers. Given the currently limited therapeutic options, the definition of molecular subgroups with the development of tailored therapies remains the most promising strategy. Patients with high-level gene amplification of urokinase plasminogen activator receptor (uPAR/PLAUR) have an inferior prognosis. We analyzed the uPAR function in PDAC to understand this understudied PDAC subgroup's biology better. METHODS: A total of 67 PDAC samples with clinical follow-up and TCGA gene expression data from 316 patients were used for prognostic correlations. Gene silencing by CRISPR/Cas9, as well as transfection of uPAR and mutated KRAS, were used in PDAC cell lines (AsPC-1, PANC-1, BxPC3) treated with gemcitabine to study the impact of these two molecules on cellular function and chemoresponse. HNF1A and KRT81 were surrogate markers for the exocrine-like and quasi-mesenchymal subgroup of PDAC, respectively. RESULTS: High levels of uPAR were correlated with significantly shorter survival in PDAC, especially in the subgroup of HNF1A-positive exocrine-like tumors. uPAR knockout by CRISPR/Cas9 resulted in activation of FAK, CDC42, and p38, upregulation of epithelial makers, decreased cell growth and motility, and resistance against gemcitabine that could be reversed by re-expression of uPAR. Silencing of KRAS in AsPC1 using siRNAs reduced uPAR levels significantly, and transfection of mutated KRAS in BxPC-3 cells rendered the cell more mesenchymal and increased sensitivity towards gemcitabine. CONCLUSIONS: Activation of uPAR is a potent negative prognostic factor in PDAC. uPAR and KRAS cooperate in switching the tumor from a dormant epithelial to an active mesenchymal state, which likely explains the poor prognosis of PDAC with high uPAR. At the same time, the active mesenchymal state is more vulnerable to gemcitabine. Strategies targeting either KRAS or uPAR should consider this potential tumor-escape mechanism.

10.
J Hematol Oncol ; 16(1): 23, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932441

RESUMEN

BACKGROUND: The immunological composition of the tumor microenvironment has a decisive influence on the biological course of cancer and is therefore of profound clinical relevance. In this study, we analyzed the cooperative effects of integrin ß4 (ITGB4) on tumor cells and E-/P-selectin on endothelial cells within the tumor stroma for regulating tumor growth by shaping the local and systemic immune environment. METHODS: We used several preclinical mouse models for different solid human cancer types (xenograft and syngeneic) to explore the role of ITGB4 (shRNA-mediated knockdown in tumor cells) and E-/P-selectins (knockout in mice) for tumor growth; effects on apoptosis, proliferation and intratumoral signaling pathways were determined by histological and biochemical methods and 3D in vitro experiments; changes in the intratumoral and systemic immune cell composition were determined by flow cytometry and immunohistochemistry; chemokine levels and their attracting potential were measured by ELISA and 3D invasion assays. RESULTS: We observed a very robust synergism between ITGB4 and E-/P-selectin for the regulation of tumor growth, accompanied by an increased recruitment of CD11b+ Gr-1Hi cells with low granularity (i.e., myeloid-derived suppressor cells, MDSCs) specifically into ITGB4-depleted tumors. ITGB4-depleted tumors undergo apoptosis and actively attract MDSCs, well-known to promote tumor growth in several cancers, via increased secretion of different chemokines. MDSC trafficking into tumors crucially depends on E-/P-selectin expression. Analyses of clinical samples confirmed an inverse relationship between ITGB4 expression in tumors and number of tumor-infiltrating leukocytes. CONCLUSIONS: These findings suggest a distinct vulnerability of ITGB4Lo tumors for MDSC-directed immunotherapies.


Asunto(s)
Integrina beta4 , Células Supresoras de Origen Mieloide , Neoplasias , Animales , Humanos , Ratones , Línea Celular Tumoral , Quimiocinas , Células Endoteliales/metabolismo , Integrina beta4/metabolismo , Selectina-P , Microambiente Tumoral
11.
Mol Cancer ; 22(1): 17, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36691028

RESUMEN

BACKGROUND: Colorectal cancer liver metastases (CRCLM) are associated with a poor prognosis, reflected by a five-year survival rate of 14%. Anti-angiogenic therapy through anti-VEGF antibody administration is one of the limited therapies available. However, only a subgroup of metastases uses sprouting angiogenesis to secure their nutrients and oxygen supply, while others rely on vessel co-option (VCO). The distinct mode of vascularization is reflected by specific histopathological growth patterns (HGPs), which have proven prognostic and predictive significance. Nevertheless, their molecular mechanisms are poorly understood. METHODS: We evaluated CRCLM from 225 patients regarding their HGP and clinical data. Moreover, we performed spatial (21,804 spots) and single-cell (22,419 cells) RNA sequencing analyses to explore molecular differences in detail, further validated in vitro through immunohistochemical analysis and patient-derived organoid cultures. RESULTS: We detected specific metabolic alterations and a signature of WNT signalling activation in metastatic cancer cells related to the VCO phenotype. Importantly, in the corresponding healthy liver of CRCLM displaying sprouting angiogenesis, we identified a predominantly expressed capillary subtype of endothelial cells, which could be further explored as a possible predictor for HGP relying on sprouting angiogenesis. CONCLUSION: These findings may prove to be novel therapeutic targets to the treatment of CRCLM, in special the ones relying on VCO.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Células Endoteliales/patología , Neoplasias Hepáticas/genética , Neovascularización Patológica/patología , Neoplasias Colorrectales/patología
12.
Cell Death Dis ; 13(11): 979, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402755

RESUMEN

Tuft cells are chemosensory epithelial cells in the respiratory tract and several other organs. Recent studies revealed tuft cell-like gene expression signatures in some pulmonary adenocarcinomas, squamous cell carcinomas (SQCC), small cell carcinomas (SCLC), and large cell neuroendocrine carcinomas (LCNEC). Identification of their similarities could inform shared druggable vulnerabilities. Clinicopathological features of tuft cell-like (tcl) subsets in various lung cancer histotypes were studied in two independent tumor cohorts using immunohistochemistry (n = 674 and 70). Findings were confirmed, and additional characteristics were explored using public datasets (RNA seq and immunohistochemical data) (n = 555). Drug susceptibilities of tuft cell-like SCLC cell lines were also investigated. By immunohistochemistry, 10-20% of SCLC and LCNEC, and approximately 2% of SQCC expressed POU2F3, the master regulator of tuft cells. These tuft cell-like tumors exhibited "lineage ambiguity" as they co-expressed NCAM1, a marker for neuroendocrine differentiation, and KRT5, a marker for squamous differentiation. In addition, tuft cell-like tumors co-expressed BCL2 and KIT, and tuft cell-like SCLC and LCNEC, but not SQCC, also highly expressed MYC. Data from public datasets confirmed these features and revealed that tuft cell-like SCLC and LCNEC co-clustered on hierarchical clustering. Furthermore, only tuft cell-like subsets among pulmonary cancers significantly expressed FOXI1, the master regulator of ionocytes, suggesting their bidirectional but immature differentiation status. Clinically, tuft cell-like SCLC and LCNEC had a similar prognosis. Experimentally, tuft cell-like SCLC cell lines were susceptible to PARP and BCL2 co-inhibition, indicating synergistic effects. Taken together, pulmonary tuft cell-like cancers maintain histotype-related clinicopathologic characteristics despite overlapping unique molecular features. From a therapeutic perspective, identification of tuft cell-like LCNECs might be crucial given their close kinship with tuft cell-like SCLC.


Asunto(s)
Carcinoma de Células Grandes , Carcinoma Neuroendocrino , Carcinoma de Células Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Carcinoma de Células Grandes/genética , Carcinoma de Células Pequeñas/metabolismo , Carcinoma de Células Pequeñas/patología , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/patología , Carcinoma de Células Escamosas/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factores de Transcripción Forkhead
13.
Cancers (Basel) ; 14(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36230684

RESUMEN

BACKGROUND: After initially responding to empiric radio-chemotherapy, most advanced thymomas (TH) and thymic carcinomas (TC) become refractory and require second-line therapy. The multi-target receptor tyrosine kinase (RTK) inhibitor, sunitinib, is one of the few options, especially in patients with thymic carcinomas, and has resulted in partial remissions and prolonged overall survival. However, sunitinib shows variable activity in thymomas, and not all patients benefit equally. A better understanding of its mode of action and the definition of predictive biomarkers would help select patients who profit most. METHODS: Six cell lines were treated with sunitinib in vitro. Cell viability was measured by MTS assay and used to define in vitro responders and non-responders. A quantitative real-time assay simultaneously measuring the phosphorylation of 144 tyrosine kinase substrates was used to correlate cell viability with alterations of the phospho-kinome, calculate a sunitinib response index (SRI), and impute upstream tyrosine kinases. Sunitinib was added to protein lysates of 29 malignant TH and TC. Lysates were analyzed with the same phosphorylation assay. The SRI tentatively classified cases into potential clinical responders and non-responders. In addition, the activation patterns of 44 RTKs were studied by phospho-RTK arrays in 37 TH and TC. RESULTS: SRI application separated thymic epithelial tumors (TET) in potential sunitinib responders and resistant cases. Upstream kinase prediction identified multiple RTKs potentially involved in sunitinib response, many of which were subsequently shown to be differentially overexpressed in TH and TC. Among these, TYRO3/Dtk stood out since it was exclusively present in metastatic TH. The function of TYRO3 as a mediator of sunitinib resistance was experimentally validated in vitro. CONCLUSIONS: Using indirect and direct phosphoproteomic analyses to predict sunitinib response in malignant TET, we have shown that TH and TC express multiple important sunitinib target RTKs. Among these, TYRO3 was identified as a potent mediator of sunitinib resistance activity, specifically in metastatic TH. TYRO3 may thus be both a novel biomarker of sunitinib resistance and a potential therapeutic target in advanced thymomas and thymic carcinomas.

14.
JCI Insight ; 7(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35993361

RESUMEN

Metastatic pancreatic cancer (PDAC) has a poor clinical outcome with a 5-year survival rate below 3%. Recent transcriptome profiling of PDAC biopsies has identified 2 clinically distinct subtypes - the "basal-like" (BL) subtype with poor prognosis and therapy resistance compared with the less aggressive and drug-susceptible "classical" (CLA) subtype. However, the mechanistic events and environmental factors that promote the BL subtype identity are not very clear. Using preclinical models, patient-derived xenografts, and FACS-sorted PDAC patient biopsies, we report here that the axon guidance receptor, roundabout guidance receptor 3 (ROBO3), promotes the BL metastatic program via a potentially unique AXL/IL-6/phosphorylated STAT3 (p-STAT3) regulatory axis. RNA-Seq identified a ROBO3-mediated BL-specific gene program, while tyrosine kinase profiling revealed AXL as the key mediator of the p-STAT3 activation. CRISPR/dCas9-based ROBO3 silencing disrupted the AXL/p-STAT3 signaling axis, thereby halting metastasis and enhancing therapy sensitivity. Transcriptome analysis of resected patient tumors revealed that AXLhi neoplastic cells associated with the inflammatory stromal program. Combining AXL inhibitor and chemotherapy substantially restored a CLA phenotypic state and reduced disease aggressiveness. Thus, we conclude that a ROBO3-driven hierarchical network determines the inflammatory and prometastatic programs in a specific PDAC subtype.


Asunto(s)
Orientación del Axón , Neoplasias Pancreáticas , Receptores de Superficie Celular , Orientación del Axón/genética , Orientación del Axón/fisiología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pronóstico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Tirosina Quinasa del Receptor Axl
15.
Br J Cancer ; 127(10): 1876-1885, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35999270

RESUMEN

BACKGROUND: Tuft cells are chemosensory epithelial cells playing a role in innate immunity. Recent studies revealed cancers with a tuft cell-like gene expression signature in the thorax. We wondered whether this signature might also occur in extrathoracic cancers. METHODS: We examined mRNA expression of tuft cell markers (POU2F3, GFI1B, TRPM5, SOX9, CHAT, and AVIL) in 19 different types of cancers in multiple extrathoracic organs with The Cancer Genome Atlas (TCGA) (N = 6322). Four different extrathoracic cancers in our local archives (N = 909) were analysed by immunohistochemistry. RESULTS: Twenty-two (0.35%) extrathoracic tumours with co-expression of POU2F3 and other tuft cell markers were identified in various TCGA datasets. Twelve of the 22 "tuft cell-like tumours" shared poor differentiation and a gene expression pattern, including KIT, anti-apoptotic BCL2, and ionocyte-associated genes. In our archival cases, eleven (1.21%) tumours co-expressing POU2F3, KIT, and BCL2 on immunohistochemistry, i.e., were presumable tuft cell-like cancers. In three among five TCGA cohorts, the tuft cell-like cancer subsets expressed SLFN11, a promising biomarker of PARP inhibitor susceptibility. CONCLUSIONS: Tuft cell-like carcinomas form distinct subsets in cancers of many organs. It appears warranted to investigate their shared gene expression signature as a predictive biomarker for novel therapeutic strategies.


Asunto(s)
Carcinoma , Transcriptoma , Humanos , Células Epiteliales/patología , Carcinoma/patología , Biomarcadores/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Nucleares/metabolismo
16.
Metabolites ; 12(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35888776

RESUMEN

Activating KRAS mutations occur in about 30% of pulmonary adenocarcinoma (AC) cases and the discovery of specific inhibitors of G12C-mutated KRAS has considerably improved the prognosis for a subgroup of about 14% of non-small cell lung cancer (NSCLC) patients. However, even in patients with a KRAS G12C mutation, the overall response rate only reaches about 40% and mutations other than G12C still cannot be targeted. Despite the fact that one-carbon metabolism (1CM) and epigenetic regulation are known to be dysregulated by aberrant KRAS activity, we still lack evidence that co-treatment with drugs that regulate these factors might ameliorate response rates and patient prognosis. In this study, we show a direct dependency of Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) and Enhancer of Zeste Homolog 2 (EZH2) expression on mutationally activated KRAS and their prognostic relevance in KRAS-mutated AC. We show that aberrant KRAS activity generates a vulnerability of AC cancer cell lines to both MTHFD2 and EZH2 inhibitors. Importantly, co-inhibition of both factors was synergistically effective and comparable to KRASG12C inhibition alone, paving the way for their use in a therapeutic approach for NSCLC cancer patients.

17.
NPJ Precis Oncol ; 6(1): 52, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853934

RESUMEN

Lung cancer is the leading cause of cancer-related deaths worldwide. Fibroblast growth factor receptor 1 (FGFR1) gene amplification is one of the most prominent and potentially targetable genetic alterations in squamous-cell lung cancer (SQCLC). Highly selective tyrosine kinase inhibitors have been developed to target FGFR1; however, resistance mechanisms originally existing in patients or acquired during treatment have so far led to limited treatment efficiency in clinical trials. In this study we performed a wide-scale phosphoproteomic mass-spectrometry analysis to explore signaling pathways that lead to resistance toward FGFR1 inhibition in lung cancer cells that display (i) intrinsic, (ii) pharmacologically induced and (iii) mutationally induced resistance. Additionally, we correlated AKT activation to CD44 expression in 175 lung cancer patient samples. We identified a CD44/PAK1/AKT signaling axis as a commonly occurring resistance mechanism to FGFR1 inhibition in lung cancer. Co-inhibition of AKT/FGFR1, CD44/FGFR1 or PAK1/FGFR1 sensitized 'intrinsically resistant' and 'induced-resistant' lung-cancer cells synergetically to FGFR1 inhibition. Furthermore, strong CD44 expression was significantly correlated with AKT activation in SQCLC patients. Collectively, our phosphoproteomic analysis of lung-cancer cells resistant to FGFR1 inhibitor provides a large data library of resistance-associated phosphorylation patterns and leads to the proposal of a common resistance pathway comprising CD44, PAK1 and AKT activation. Examination of CD44/PAK1/AKT activation could help to predict response to FGFR1 inhibition. Moreover, combination between AKT and FGFR1 inhibitors may pave the way for an effective therapy of patients with treatment-resistant FGFR1-dependent lung cancer.

18.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35740494

RESUMEN

Tumor grading is a robust prognostic predictor in patients with neuroendocrine neoplasms (NEN) and guides therapy, especially in tumors with high proliferation. NEN can be separated into well-differentiated and poorly differentiated types. The more aggressive NEN have been further separated into neuroendocrine tumors (NET G3) with a better prognosis and neuroendocrine carcinomas (NEC) with a worse prognosis. Despite this distinction's tremendous clinical and therapeutic relevance, optimal diagnostic biomarkers are still lacking. In this study, we analyzed the protein expression and prognostic impact of Enhancer of Zeste Homolog 2 (EZH2) by immunohistochemistry in 219 tissue samples of gastroenteropancreatic (GEP-NEN) and pulmonary NEN (P-NEN). EZH2 was almost exclusively expressed in NEN with a proliferation rate above 20% (G3), while all low-grade tumors were nearly negative. Among high-grade NEN, 65% showed high and 35% low expression of EZH2. In this group, the high expression of EZH2 was significantly associated with poor overall survival and NEC histology. Interestingly, EZH2 seems to act independently of Polycomb Repressive Complex 2 (PRC2) in NEN. In conclusion, we propose EZH2 as a robust biomarker for distinguishing between NET G3 and NEC among gastroenteropancreatic and pulmonary NEN.

19.
Cancers (Basel) ; 14(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35565214

RESUMEN

Seventy percent of patients with colorectal cancer develop liver metastases (CRLM), which are a decisive factor in cancer progression. Therapy outcome is largely influenced by tumor heterogeneity, but the intra- and inter-patient heterogeneity of CRLM has been poorly studied. In particular, the contribution of the WNT and EGFR pathways, which are both frequently deregulated in colorectal cancer, has not yet been addressed in this context. To this end, we comprehensively characterized normal liver tissue and eight CRLM from two patients by standardized histopathological, molecular, and proteomic subtyping. Suitable fresh-frozen tissue samples were profiled by transcriptome sequencing (RNA-Seq) and proteomic profiling with reverse phase protein arrays (RPPA) combined with bioinformatic analyses to assess tumor heterogeneity and identify WNT- and EGFR-related master regulators and metastatic effectors. A standardized data analysis pipeline for integrating RNA-Seq with clinical, proteomic, and genetic data was established. Dimensionality reduction of the transcriptome data revealed a distinct signature for CRLM differing from normal liver tissue and indicated a high degree of tumor heterogeneity. WNT and EGFR signaling were highly active in CRLM and the genes of both pathways were heterogeneously expressed between the two patients as well as between the synchronous metastases of a single patient. An analysis of the master regulators and metastatic effectors implicated in the regulation of these genes revealed a set of four genes (SFN, IGF2BP1, STAT1, PIK3CG) that were differentially expressed in CRLM and were associated with clinical outcome in a large cohort of colorectal cancer patients as well as CRLM samples. In conclusion, high-throughput profiling enabled us to define a CRLM-specific signature and revealed the genes of the WNT and EGFR pathways associated with inter- and intra-patient heterogeneity, which were validated as prognostic biomarkers in CRC primary tumors as well as liver metastases.

20.
Gut ; 71(12): 2561-2573, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35365570

RESUMEN

OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) can persist in the stage of simple hepatic steatosis or progress to steatohepatitis (NASH) with an increased risk for cirrhosis and cancer. We examined the mechanisms controlling the progression to severe NASH in order to develop future treatment strategies for this disease. DESIGN: NFATc1 activation and regulation was examined in livers from patients with NAFLD, cultured and primary hepatocytes and in transgenic mice with differential hepatocyte-specific expression of the transcription factor (Alb-cre, NFATc1c.a . and NFATc1Δ/Δ ). Animals were fed with high-fat western diet (WD) alone or in combination with tauroursodeoxycholic acid (TUDCA), a candidate drug for NAFLD treatment. NFATc1-dependent ER stress-responses, NLRP3 inflammasome activation and disease progression were assessed both in vitro and in vivo. RESULTS: NFATc1 expression was weak in healthy livers but strongly induced in advanced NAFLD stages, where it correlates with liver enzyme values as well as hepatic inflammation and fibrosis. Moreover, high-fat WD increased NFATc1 expression, nuclear localisation and activation to promote NAFLD progression, whereas hepatocyte-specific depletion of the transcription factor can prevent mice from disease acceleration. Mechanistically, NFATc1 drives liver cell damage and inflammation through ER stress sensing and activation of the PERK-CHOP unfolded protein response (UPR). Finally, NFATc1-induced disease progression towards NASH can be blocked by TUDCA administration. CONCLUSION: NFATc1 stimulates NAFLD progression through chronic ER stress sensing and subsequent activation of terminal UPR signalling in hepatocytes. Interfering with ER stress-responses, for example, by TUDCA, protects fatty livers from progression towards manifest NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Factores de Transcripción/metabolismo , Inflamación/metabolismo , Ratones Transgénicos , Progresión de la Enfermedad , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...